题目内容

在△ABC中,AB≠AC,∠ABC、∠ACB的平分线交于O点,过O点作EF∥BC交AB、AC于E、F.
(1)如图1,写出图中所有的等腰三角形.猜想:EF与BE、CF之间有怎样的关系,并说明理由.
(2)如图2,△ABC中∠ABC的平分线BO与三角形外角平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.图中还有等腰三角形吗?如果有,分别指出它们.写出EF与BE、CF关系,并说明理由.
分析:(1)等腰三角形有△BEO和△CFO,根据角平分线性质和平行线性质推出∠EBO=∠EOB,∠FOC=∠FCO,根据等角对等边推出即可;根据BE=OE,CF=OF即可得出EF与BE、CF之间的关系;
(2)等腰三角形有△BEO和△CFO,根据角平分线性质和平行线性质推出∠EBO=∠EOB,∠FOC=∠FCO,根据等角对等边推出即可;根据BE=OE,CF=OF即可得出EF与BE、CF之间的关系.
解答:解:(1)∵BO平分∠ABC,CO平分∠ACB,
∴∠EBO=∠OBC,∠FCO=∠OCB,
∵EF∥BC,
∴∠EOB=∠OBC,∠FOC=∠OCB,
∴∠EBO=∠EOB,∠FOC=∠FCO,
∴BE=OE,CF=OF,
∴△BEO和△CFO是等腰三角形
即图中等腰三角形有△BEO,△CFO;
EF与BE、CF之间的关系是EF=BE+CF,
理由是:∵BE=OE,CF=OF,
∴EF=BE+CF.

(2)∵BO平分∠ABC,CO平分∠ACG,
∴∠EBO=∠OBC,∠FCO=∠OCG,
∵EF∥BC,
∴∠EOB=∠OBC,∠FOC=∠OCG,
∴∠EBO=∠EOB,∠FOC=∠FCO,
∴BE=OE,CF=OF,
∴△BEO和△CFO是等腰三角形
即图中等腰三角形有△BEO,△CFO;
EF与BE、CF之间的关系是EF=BE-CF,
理由是:∵BE=OE,CF=OF,
∴EF=OE-OF=BE-CF.
点评:本题考查了角平分线定义,平行线的性质,等腰三角形的判定等知识点,关键是推出BE=OE,CF=OF.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网