题目内容
(2012•襄阳)如图,在△ABC中,AB=AC,AD⊥BC于点D,将△ADC绕点A顺时针旋转,使AC与AB重合,点D落在点E处,AE的延长线交CB的延长线于点M,EB的延长线交AD的延长线于点N.
求证:AM=AN.
求证:AM=AN.
分析:根据旋转的性质可得△AEB和△ADC全等,根据全等三角形对应角相等可得∠EAB=∠CAD,∠EBA=∠C,再结合等腰三角形三线合一的性质即可推出∠EAB=∠DAB,∠EBA=∠DBA,从而推出∠MBA=∠NBA,然后根据“角边角”证明△AMB和△ANB全等,根据全等三角形对应边相等即可得证.
解答:证明:∵△AEB由△ADC旋转而得,
∴△AEB≌△ADC,
∴∠EAB=∠CAD,∠EBA=∠C,
∵AB=AC,AD⊥BC,
∴∠BAD=∠CAD,∠ABC=∠C,
∴∠EAB=∠DAB,
∠EBA=∠DBA,
∵∠EBM=∠DBN,
∴∠MBA=∠NBA,
在△AMB和△ANB中,
,
∴△AMB≌△ANB(ASA),
∴AM=AN.
∴△AEB≌△ADC,
∴∠EAB=∠CAD,∠EBA=∠C,
∵AB=AC,AD⊥BC,
∴∠BAD=∠CAD,∠ABC=∠C,
∴∠EAB=∠DAB,
∠EBA=∠DBA,
∵∠EBM=∠DBN,
∴∠MBA=∠NBA,
在△AMB和△ANB中,
|
∴△AMB≌△ANB(ASA),
∴AM=AN.
点评:本题考查了全等三角形的判定与性质,旋转变换的性质,等腰三角形三线合一的性质,证明边相等,通常利用证明两边所在的三角形全等进行证明.
练习册系列答案
相关题目