题目内容

如图,在Rt△ABC中,∠ABC=90°,D是AC的中点,过 A、B、D三点的圆交CB的延长线于点E.
(1)求证:AE=CE.
(2)若EF与过A、B、D三点的圆相切于点E,交AC的延长线于点F,若CD=CF=2cm,求过 A、B、D三点的圆的直径.
分析:(1)连接DE,求出AE是直径,求出∠ADE=90°,根据线段垂直平分线性质求出即可.
(2)证△ADE∽△AEF,得出比例式,代入求出即可.
解答:(1)证明:连接DE,
∵∠ABC=90°,
∴∠ABE=90°,
∴AE是过 A、B、D三点的圆的直径,
∴∠ADE=90°,
∴DE⊥AC,
又∵D是AC的中点,
∴DE是AC的垂直平分线,
∴AE=CE. 
                                  
(2)解:∵CD=CF=2cm,
∴AF=AC+CF=6cm,
∵EF与过 A、B、D三点的圆相切于点E,
∴∠AEF=90°=∠ADE,
又∵∠DAE=∠FAE,
∴△ADE∽△AEF,
AE
AF
=
AD
AE

AE
6
=
2
AE

∴AE=2
3
cm.
点评:本题考查了相似三角形的性质和判定,圆周角定理,切线的性质,线段垂直平分线性质的应用,主要考查学生综合运用定理进行推理和计算的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网