题目内容
【题目】阅读材料:数学课上,吴老师在求代数式x2﹣4x+5的最小值时,利用公式a2±2ab+b2=(a±b)2,对式子作如下变形:x2﹣4x+5=x2﹣4x+4+1=(x﹣2)2+1,
因为(x﹣2)2≥0,
所以(x﹣2)2+1≥1,
当x=2时,(x﹣2)2+1=1,
因此(x﹣2)2+1有最小值1,即x2﹣4x+5的最小值为1.
通过阅读,解下列问题:
(1)代数式x2+6x+12的最小值为 ;
(2)求代数式﹣x2+2x+9的最大或最小值;
(3)试比较代数式3x2﹣2x与2x2+3x﹣7的大小,并说明理由.
【答案】(1)3;(2) ﹣x2+2x+9最大值为10;(3) 3x2﹣2x>2x2+3x﹣7,理由见解析
【解析】
(1)、(2)参照范例的解题方法进行分析解答即可;
(2)先求出两个代数式的差,再用范例中的方法判断所得差的值的正负即可得到两个代数式的大小关系.
(1)∵x2+6x+12=(x+3)2+3,且,
∴,即代数式x2+6x+12的最小值为3;
(2)∵﹣x2+2x+9=﹣(x﹣1)2+10,且(x﹣1)2≥0,
∴﹣(x﹣1)2≤0,
∴,即代数式﹣x2+2x+9有最大值为10;
(3)∵(3x2﹣2x)﹣(2x2+3x﹣7)=x2﹣5x+7=,且,
∴,
∴3x2﹣2x>2x2+3x﹣7.
【题目】某公司生产的一种健身产品在市场上受到普遍欢迎,每年可在国内、国外市场上全部售完.该公司的年产量为6000件,若在国内市场销售,平均每件产品的利润与国内销售量的关系如下表:
销售量(千件) | ||
单件利润(元) |
若在国外销售,平均每件产品的利润与国外的销售数量的关系如下表:
销售量(千件) | ||
单件利润(元) | 100 |
(1)用的代数式表示为:=;
(2)该公司每年国内、国外的销售量各为多少时,可使公司每年的总利润为60万元?