题目内容

【题目】为迎接暑假旅游高峰的到来,某旅游纪念品商店决定购进AB两种纪念品.若购进A种纪念品7件,B种纪念品4件,需要760元;若购进A种纪念品5件.B种纪念品8件,需要800元.

1)求购进AB两种纪念品每件各需多少元?

2)若该商店决定购进这两种纪念品共100件.考虑市场需求和资金周转,这100件纪念品的资金不少于7000元,但不超过7200元,那么该商店共有几种进货方案?

3)若销售A种纪念品每件可获利润30元,B种纪念品每件可获利润20元,用(2)中的进货方案,哪一种方案可获利最大?最大利润是多少元?

【答案】1)进A种纪念品每件需要80元,购进B种纪念品每件需要50元;(2)该商店共有7种进货方案;(32730

【解析】

1)根据关系式:A种纪念品7件需要钱数+B种纪念品4件需要钱数=760元,A种纪念品 5 件所需钱数+ B 种纪念品 8件所需钱数=800元,列出二元一次方程组,解之即可.

2)根据关系式:用于购买这 100 件纪念品的资金不少于 7000 元,但不超过 7200 元,列出不等式组,解之即可.

3)设总利润为W元,列出W关于a的一次函数表达式,根据一次函数的性质可得结果.

解:(1)设购进A种纪念品每件需要x元,购进B种纪念品每件需要y元,

由题意,得

解得:

答:进A种纪念品每件需要80元,购进B种纪念品每件需要50元;

2)设该商店购进A种纪念品a件,则购进B种纪念品(100a)件,由题意,得

解得:

a为整数,

a67686970717273

∴该商店共有7种进货方案;

3)设总利润为W元,由题意,得

W30a+20100a)=10a+2000

k100

Wx的增大而增大,

∴该商店购进A种纪念品73件,购进B种纪念品27套,W最大10×73+20002730元.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网