题目内容
【题目】长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图,灯A射线自AM顺时针旋转至AN便立即回转,灯B射线自BP顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是a度/秒,灯B转动的速度是b度/秒,且a,b满足|a﹣3b﹣1|+(a+b﹣5)2=0.假定这一带长江两岸河堤是平行的,即PQ∥MN,且∠BAN=45°.
(1)求a,b的值;
(2)若两灯同时转动,经过42秒,两灯射出的光束交于C,求此时∠ACB的度数;
(3)若灯B射线先转动10秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(直接写出答案)
【答案】(1)a=4,b=1;(2)∠ACB=54°;(3)t=或 t=70 或t= 或t=142;
【解析】
(1)根据|a﹣3b﹣1|+(a+b﹣5)2=0,可得a﹣3b﹣1=0,且a+b﹣4=0 ,进而求出a,b的值
(2)根据题意两灯同时转动42秒可知∠PBC=42°,∠MAC=168°,再根据平行线的性质即可解答
(3)设A灯转动t秒,两灯的光束互相平行根据题意可知一共有四种情况①当0<t<45时②当45<t<90时③当90<t<135时④当135<t<170时,再把其代入到公式计算即可
(1)∵a、b满足|a﹣3b﹣1|+(a+b﹣5)2=0,
∴a﹣3b﹣1=0,且a+b﹣4=0,
∴a=4,b=1;
(2)同时转动,t=42时,
∠PBC=42°,∠MAC=168°,
∵PQ∥MN,
∴∠ACB=54°,
(3)①当0<t<45时,
∴4t=10+7,
解得t= ;
②当45<t<90时,
∴360﹣4t=10+t,
解得t=70;
③当90<t<135时,
∴4t﹣360=10+t,
解得t= ;
④当135<t<170时,
∴720﹣4t=10+t,
解得t=142;
综上所述:t=或 t=70 或t=或t=142;