题目内容

如图,AB是⊙O的直径,∠B=∠CAD.
(1)求证:AC是⊙O的切线;
(2)若点E是
BD
的中点,连接AE交BC于点F,当BD=5,CD=4时,求AF的值.
(1)∵AB是⊙O的直径,
∴∠ADB=∠ADC=90°,
∵∠B=∠CAD,∠C=∠C,
∴△ADC△BAC,
∴∠BAC=∠ADC=90°,
∴BA⊥AC,
∴AC是⊙O的切线.

(2)∵BD=5,CD=4,
∴BC=9,
∵△ADC△BAC(已证),
AC
BC
=
CD
AC
,即AC2=BC×CD=36,
解得:AC=6,
在Rt△ACD中,AD=
AC2-CD2
=2
5

∵∠CAF=∠CAD+∠DAE=∠ABF+∠BAE=∠AFD,
∴CA=CF=6,
∴DF=CA-CD=2,
在Rt△AFD中,AF=
DF2+AD2
=2
6
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网