题目内容
【题目】在平面直角坐标系中,抛物线y=﹣x2﹣2x+3与x轴交于A,B两点(A在B的左侧),与y轴交于点C,顶点为D.
(1)请直接写出点A,C,D的坐标;
(2)如图(1),在x轴上找一点E,使得△CDE的周长最小,求点E的坐标;
(3)如图(2),F为直线AC上的动点,在抛物线上是否存在点P,使得△AFP为等腰直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.
【答案】
(1)
解:当y=﹣x2﹣2x+3中y=0时,有﹣x2﹣2x+3=0,
解得:x1=﹣3,x2=1,
∵A在B的左侧,
∴A(﹣3,0),B(1,0).
当y=﹣x2﹣2x+3中x=0时,则y=3,
∴C(0,3).
∵y=﹣x2﹣2x+3=﹣(x+1)2+4,
∴顶点D(﹣1,4)
(2)
解:作点C关于x轴对称的点C′,连接C′D交x轴于点E,此时△CDE的周长最小,如图1所示.
∵C(0,3),
∴C′(0,﹣3).
设直线C′D的解析式为y=kx+b,
则有 ,解得: ,
∴直线C′D的解析式为y=﹣7x﹣3,
当y=﹣7x﹣3中y=0时,x=﹣ ,
∴当△CDE的周长最小,点E的坐标为(﹣ ,0)
(3)
解:设直线AC的解析式为y=ax+c,
则有 ,解得: ,
∴直线AC的解析式为y=x+3.
假设存在,设点F(m,m+3),
△AFP为等腰直角三角形分三种情况(如图2所示):
①当∠PAF=90°时,P(m,﹣m﹣3),
∵点P在抛物线y=﹣x2﹣2x+3上,
∴﹣m﹣3=﹣m2﹣2m+3,
解得:m1=﹣3(舍去),m2=2,
此时点P的坐标为(2,﹣5);
②当∠AFP=90°时,P(2m+3,0)
∵点P在抛物线y=﹣x2﹣2x+3上,
∴0=﹣(2m+3)2﹣2×(2m+3)+3,
解得:m3=﹣3(舍去),m4=﹣1,
此时点P的坐标为(1,0);
③当∠APF=90°时,P(m,0),
∵点P在抛物线y=﹣x2﹣2x+3上,
∴0=﹣m2﹣2m+3,
解得:m5=﹣3(舍去),m6=1,
此时点P的坐标为(1,0).
综上可知:在抛物线上存在点P,使得△AFP为等腰直角三角形,点P的坐标为(2,﹣5)或(1,0).
【解析】(1)令抛物线解析式中y=0,解关于x的一元二次方程即可得出点A、B的坐标,再令抛物线解析式中x=0求出y值即可得出点C坐标,利用配方法将抛物线解析式配方即可找出顶点D的坐标;(2)作点C关于x轴对称的点C′,连接C′D交x轴于点E,此时△CDE的周长最小,由点C的坐标可找出点C′的坐标,根据点C′、D的坐标利用待定系数法即可求出直线C′D的解析式,令其y=0求出x值,即可得出点E的坐标;(3)根据点A、C的坐标利用待定系数法求出直线AC的解析式,假设存在,设点F(m,m+3),分∠PAF=90°、∠AFP=90°和∠APF=90°三种情况考虑.根据等腰直角三角形的性质结合点A、F点的坐标找出点P的坐标,将其代入抛物线解析式中即可得出关于m的一元二次方程,解方程求出m值,再代入点P坐标中即可得出结论.
【考点精析】认真审题,首先需要了解二次函数的图象(二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点),还要掌握二次函数的性质(增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小)的相关知识才是答题的关键.