题目内容

【题目】如图,AD∥BC,∠A=90°,EAB上的一点,且AD=BE,∠1=∠2.

(1)求证:△ADE≌△BEC;

(2)若AD=6,AB=14,请求出CD的长.

【答案】(1)见解析;(2)

【解析】

(1)根据已知可得到∠A=∠B=90°,DE=CE,AD=BE从而利用HL判定两三角形全等;

(2)由三角形全等可得到对应角相等,对应边相等,由已知可推出∠DEC=90°,由已知我们可求得BE、AE的长,再利用勾股定理求得ED、DC的长.

(1)∵AD∥BC,∠A=90°,∠1=∠2,

∴∠A=∠B=90°,DE=CE.

∵AD=BE,

∴△ADE≌△BEC.

(2)由△ADE≌△BEC∠AED=∠BCE,AD=BE.

∴∠AED+∠BEC=∠BCE+∠BEC=90°.

∴∠DEC=90°.

∵AD=6,AB=14,

∴BE=AD=6,AE=14-6=8.

∵∠1=∠2,

∴ED=EC=

∴DC=

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网