题目内容
【题目】在平面直角坐标系xOy中,二次函数y=x2﹣2hx+h的图象的顶点为点D.
(1)当h=﹣1时,求点D的坐标;
(2)当﹣1≤x≤1时,求函数的最小值m.(用含h的代数式表示m)
【答案】(1) (﹣1,﹣2);(2) 见解析.
【解析】
(1)把h=-1代入y=x2-2hx+h,化为顶点式,即可求出点D的坐标;
(2)先根据二次函数的性质得出x=h时,函数有最小值h-h2.再分h≤-1,-1<h<1,h≥1三种情况求解即可.
(1)当h=-1时,y=x2+2x-1=(x+1)2-2,
则顶点D的坐标为(-1,-2);
(2)∵y=x2-2hx+h=(x-h)2+h-h2,
∴x=h时,函数有最小值h-h2.
①如果h≤-1,那么x=-1时,函数有最小值,此时m=(-1)2-2h×(-1)+h=1+3h;
②如果-1<h<1,那么x=h时,函数有最小值,此时m=h-h2;
③如果h≥1,那么x=1时,函数有最小值,此时m=12-2h×1+h=1-h.
【题目】某校七年级6个班的180名学生即将参加北京市中学生开放性科学实践活动送课到校课程的学习.学习内容包括以下7个领域:A.自然与环境,B.健康与安全,C.结构与机械,D.电子与控制,E.数据与信息,F.能源与材料,G.人文与历史.为了解学生喜欢的课程领域,学生会开展了一次调查研究,请将下面的过程补全.
收集数据学生会计划调查30名学生喜欢的课程领域作为样本,下面抽样调查的对象选择合理的是 ;(填序号)
①选择七年级1班、2班各15名学生作为调查对象
②选择机器人社团的30名学生作为调查对象
③选择各班学号为6的倍数的30名学生作为调查对象
调查对象确定后,调查小组获得了30名学生喜欢的课程领域如下:
A,C,D,D,G,G,F,E,B,G,
C,C,G,D,B,A,G,F,F,A,
G,B,F,G,E,G,A,B,G,G
整理、描述数据整理、描述样本数据,绘制统计图表如下,请补全统计表和统计图.
某校七年级学生喜欢的课程领域统计表
课程领域 | 人数 |
A | 4 |
B | 4 |
C | 3 |
D | 3 |
E | 2 |
F | 4 |
G | 10 |
合计 | 30 |
分析数据、推断结论请你根据上述调查结果向学校推荐本次送课到校的课程领域,你的推荐是 (填A﹣G的字母代号),估计全年级大约有 名学生喜欢这个课程领域.