题目内容
【题目】如图,平面直角坐标系中,直线l:y=x+m交x轴于点A,二次函数y=ax2﹣3ax+c(a≠0,且a、c是常数)的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,与直线l交于点D,已知CD与x轴平行,且S△ACD:S△ABD=3:5.
(1)求点A的坐标;
(2)求此二次函数的解析式;
(3)点P为直线l上一动点,将线段AC绕点P顺时针旋转α°(0°<α°<360°)得到线段A'C'(点A,A'是对应点,点C,C'是对应点).请问:是否存在这样的点P,使得旋转后点A'和点C'分别落在直线l和抛物线y=ax2﹣3ax+c的图象上?若存在,请直接写出点A'的坐标;若不存在,请说明理由.
【答案】(1) A(﹣1,0);(2) y=﹣(x+1)(x﹣4)=﹣x2+x+2;(3)见解析.
【解析】
(1)由题意可得C(0,c),且CD∥x轴,可得D(3,c),根据面积比可得AB=5.由对称性可得点A(-2m,0)到对称轴的距离2倍是5,可求m,即可求A点坐标.
(2)由直线l过D点可求D(3,2),由A,B关于对称轴对称可求B(4,0),则可用交点式求二次函数的解析式.
(3)由点A是直线l上一点,绕直线l上点P旋转,且落在直线l上,因此可得点A与点A'重合,或点A绕点P旋转180°得到A'.设C'(a,-a2+a+2)根据中点坐标公式可求A'点坐标.
解:(1)
∵二次函数y=ax2﹣3ax+c(a≠0,且a、c是常数)的图象与x轴交于A、B两点
∴C(0,c,),对称轴是直线x==.
∵CD∥x轴.
∴C,D关于对称轴直线x=对称.
∴D(3,c).
∵S△ACD:S△ABD=3:5.且△ACD和△ABD是等高的.
∴.
∴AB=5.
∵直线y=x+m与x轴交于A点,
∴A(﹣2m,0).
∵点A,点B关于对称轴x=对称.
∴2×[﹣(﹣2m)]=5.
∴m=.
∴A(﹣1,0),且AB=5.
∴B(4,0).
(2)设抛物线解析式y=a(x+1)(x﹣4).
∵m=.
∴直线AD解析式y=x+.
∵D(3,c)在直线AD上.
∴c=+=2.
∴D(3,2)且在抛物线上.
∴2=a(3+1)(3﹣4).
∴a=﹣.
∴抛物线解析式y=﹣(x+1)(x﹣4)=﹣x2+x+2.
(3)∵点A在直线l上,旋转后A'点落在直线l上,
∴点A与点A'重合,或者点A绕着点P旋转180°.
当点A与点A'重合时,A'(﹣1,0).
当点A绕着点P旋转180°得到A',点C绕着点P旋转180°得到C'
∴AP=A'P,CP=CP'.
如图2:
设C'(a,﹣a2+a+2).
∵C( 0,2),CP=CP'.
∴P(a,﹣a2+a+2).
∵点P在直线l上,
∴﹣a2+a+2=a+.
即 a2﹣2a﹣6=0.
解得:a1=1+,a2=1﹣.
当a1=1+时,y=×(1+)+=.
∴P(,).
∵AP=A'P.
∴A'(2+,).
当a2=1﹣时,y=×(1﹣)+=.
∴P(,).
∵AP=AP'.
∴A'(2﹣,).
综上所述A'(2﹣,),(2+,),(﹣1,0).