题目内容
【题目】数学活动﹣旋转变换
(1)如图①,在△ABC中,∠ABC=130°,将△ABC绕点C逆时针旋转50°得到△A′B′C,连接BB′,求∠A′B′B的大小;
(2)如图②,在△ABC中,∠ABC=150°,AB=3,BC=5,将△ABC绕点C逆时针旋转60°得到△A′B′C,连接BB′,以A′为圆心,A′B′长为半径作圆.
(Ⅰ)猜想:直线BB′与⊙A′的位置关系,并证明你的结论;
(Ⅱ)连接A′B,求线段A′B的长度;
(3)如图③,在△ABC中,∠ABC=α(90°<α<180°),AB=m,BC=n,将△ABC绕点C逆时针旋转2β角度(0°<2β<180°)得到△A′B′C,连接A′B和BB′,以A′为圆心,A′B′长为半径作圆,问:角α与角β满足什么条件时,直线BB′与⊙A′相切,请说明理由,并求此条件下线段A′B的长度(结果用角α或角β的三角函数及字母m、n所组成的式子表示)
【答案】(1)65°;(2)切线;证明过程见解析;;(3)当α+β=180°时,直线BB′、是⊙A′的切线;
【解析】
试题分析:(1)根据∠A′B′B=∠A′B′C﹣∠BB′C,只要求出∠A′B′B即可;(2)(Ⅰ)结论:直线BB′、是⊙A′的切线.只要证明∠A′B′B=90°即可.(Ⅱ)在RT△ABB′中,利用勾股定理计算即可;(3)如图③中,当α+β=180°时,直线BB′、是⊙A′的切线.只要证明∠A′B′B=90°即可解决问题.在△CBB′中求出BB′,再在RT△A′B′B中利用勾股定理即可.
试题解析:(1)如图①中,∵△A′B′C是由△ABC旋转得到, ∴∠A′B′C=∠ABC=130°,CB=CB′,
∴∠CBB′=∠CB′B,∵∠BCB′=50°, ∴∠CBB′=∠CB′B=65°,
∴∠A′B′B=∠A′B′C﹣∠BB′C=65°.
(2)(Ⅰ)结论:直线BB′、是⊙A′的切线.
理由:如图②中,∵∠A′B′C=∠ABC=150°,CB=CB′, ∴∠CBB′=∠CB′B,∵∠BCB′=60°,
∴∠CBB′=∠CB′B=60°, ∴∠A′B′B=∠A′B′C﹣∠BB′C=90°. ∴AB′⊥BB′,
∴直线BB′、是⊙A′的切线.
(Ⅱ)∵在RT△ABB′中,∵∠AB′B=90°,BB′=BC=5,AB′=AB=3,
∴A′B==.
(3)如图③中,当α+β=180°时,直线BB′、是⊙A′的切线.
理由:∵∠A′B′C=∠ABC=α,CB=CB′, ∴∠CBB′=∠CB′B,∵∠BCB′=2β,
∴∠CBB′=∠CB′B=, ∴∠A′B′B=∠A′B′C﹣∠BB′C=α﹣90°+β=180°﹣90°=90°.
∴AB′⊥BB′, ∴直线BB′、是⊙A′的切线. 在△CBB′中∵CB=CB′=n,∠BCB′=2β,
∴BB′=2nsinβ, 在RT△A′BB′中,A′B==.