题目内容

【题目】已知∠AOB100°,∠COD40°OEOF分别平分∠AOD,∠BOD.

(1)如图1,当OAOC重合时,求∠EOF的度数;

(2)若将∠COD的从图1的位置绕点O顺时针旋转,旋转角∠AOCα,且α90°.

①如图2,试判断∠BOF与∠COE之间满足的数量关系并说明理由.

②在∠COD旋转过程中,请直接写出∠BOE,∠COF,∠AOC之间的数量关系.

【答案】(1)EOF=50°(2)①∠BOF+COE90°;理由见解析;②∠COF+AOC﹣∠BOE30°.

【解析】

(1)由题意得出∠AOD∠COD40°∠BOD∠AOB+∠COD140°,由角平分线定义得出∠EOD∠AOD20°∠DOF∠BOD70°,即可得出答案;

(2)①由角平分线定义得出∠EOD∠AOE∠AOD20°+α∠BOF∠BOD70°+α,求出∠COE∠AOE∠AOC20°α,即可得出答案;

∠EOD∠AOE20°+α∠DOF∠BOF70°+α

∠AOC40°时,求出∠COF∠DOF∠COD30°+α∠BOE∠BOD∠EOD∠AOB+∠COD+α∠EOD120°+α,即可得出答案;

40°∠AOC90°时,求出∠COF∠DOF+∠DOC150°α∠BOE∠BOD∠DOE120°+,即可得出答案.

解:(1)∵OAOC重合,

∴∠AOD∠COD40°∠BOD∠AOB+∠COD100°+40°140°

∵OE平分∠AODOF平分∠BOD

∴∠EOD∠AOD×40°20°∠DOF∠BOD×140°70°

∴∠EOF∠DOF∠EOD70°20°50°

(2)①∠BOF+∠COE90°;理由如下:

∵OE平分∠AODOF平分∠BOD

∴∠EOD∠AOE∠AOD(40°+α)20°+α∠BOF∠BOD(∠AOB+∠COD+α)(100°+40°+α)70°+α

∴∠COE∠AOE∠AOC20°+αα20°α

∴∠BOF+∠COE70°+α+20°α90°

得:∠EOD∠AOE20°+α∠DOF∠BOF70°+α

∠AOC40°时,如图2所示:

∠COF∠DOF∠COD70°+α40°30°+α

∠BOE∠BOD∠EOD∠AOB+∠COD+α∠EOD100°+40°+α(20°+α)120°+α

∴∠BOE+∠COF∠AOC120°+α+30°+αα150°

40°∠AOC90°时,如图3所示:

∠COF∠DOF+∠DOC(360°140°α)+40°150°α

∠BOE∠BOD∠DOE140°+α(20°+α)120°+

∴∠COF+∠AOC∠BOE150°(120°+)30°

综上所述,∠BOE∠COF∠AOC之间的数量关系为∠BOE+∠COF∠AOC150°∠COF+∠AOC∠BOE30°.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网