题目内容
【题目】如图,中,,点是边上一点且,点是线段上一动点,连接,以为斜边在的下方作等腰,当从点出发运动至点停止时,点的运动路径长为__________.
【答案】
【解析】
过O点作OE⊥CA于E,OF⊥BC于F,连接CO,如图,易得四边形OECF为矩形,由△AOP为等腰直角三角形得到OA=OP,∠AOP=90°,则可证明△OAE≌△OPF,所以AE=PF,OE=OF,根据角平分线的性质定理的逆定理得到CO平分∠ACP,从而可判断当P从点D出发运动至点B停止时,点O的运动路径为一条线段,接着证明CE=(AC+CP),然后分别计算P点在D点和B点时OC的长,从而计算它们的差即可得到P从点D出发运动至点B停止时,点O的运动路径长.
过O点作OE⊥CA于E,OF⊥BC于F,连接CO,如图,
∵△AOP为等腰直角三角形,
∴OA=OP,∠AOP=90°,
∵∠CEO=∠CFO=∠ECF=90°,
∴四边形OECF为矩形,
∴∠EOF=90°,
∴∠AOE=∠POF,
又∵OA=OP,∠AEO=∠PFO=90°,
∴△OAE≌△OPF,
∴AE=PF,OE=OF,
∴四边形OECF是正方形,
∴CE=CF=OE,
∵OE=OF,OE⊥CA,OF⊥BC,
∴CO平分∠ACP,
∴当P从点D出发运动至点B停止时,点O的运动路径为一条线段,
∵AE=PF,
即AC﹣CE=CF﹣CP,
而CE=CF,
∴CE=(AC+CP),
在Rt△OCE中,∠CEO=90°,∴CE2+OE2=OC2,
∴OC=CE=(AC+CP),
当AC=2,CP=CD=1时,OC=×(2+1)=,
当AC=2,CP=CB=5时,OC=×(2+5)=,
∴当P从点D出发运动至点B停止时,点O的运动路径长=﹣=2,
故答案为:2.
练习册系列答案
相关题目