题目内容
【题目】如图,∠AOB=60°,OC平分∠AOB,P为射线OC上一点,如果射线OA上的点D,满足△OPD是等腰三角形,那么∠ODP的度数为( )
A.30°B.120°
C.30°或120°D.30°或75°或120°
【答案】D
【解析】
求出∠AOC,根据等腰得出三种情况,OD=PD,OP=OD,OP=CD,根据等腰三角形性质和三角形内角和定理求出即可.
解:∵∠AOB=60°,OC平分∠AOB,
∴∠AOC=30°,
①当D在D1时,OD=PD,
∵∠AOP=∠OPD=30°,
∴∠ODP=180°﹣30°﹣30°=120°;
②当D在D2点时,OP=OD,
则∠OPD=∠ODP=(180°﹣30°)=75°;
③当D在D3时,OP=DP,
则∠ODP=∠AOP=30°;
综上所述:120°或75°或30°,
故选:D.
练习册系列答案
相关题目
【题目】下表是随机抽取的某公司部分员工的月收入资料.
月收入/元 | 45000 | 18000 | 10000 | 5500 | 5000 | 3400 | 3000 | 2000 |
人数 | 1 | 1 | 1 | 3 | 6 | 1 | 11 | 2 |
(1)请计算样本的平均数和中位数;
(2)甲乙两人分别用样本平均数和中位数来估计推断公司全体员工月收入水平,请你写出甲乙两人的推断结论;并指出谁的推断比较科学合理,能直实地反映公司全体员工月收入水平.