题目内容

【题目】如图,已知AE⊥FE,垂足为E,且E是DC的中点.

(1)如图①,如果FC⊥DC,AD⊥DC,垂足分别为C,D,且AD=DC,判断AE是∠FAD的角平分线吗?(不必说明理由)

(2)如图②,如果(1)中的条件“AD=DC”去掉,其余条件不变,(1)中的结论仍成立吗?请说明理由;

(3)如图③,如果(1)中的条件改为“AD∥FC”,(1)中的结论仍成立吗?请说明理由.

【答案】(1)AE是∠FAD的角平分线(2)成立(3)成立

【解析】

见详解

(1)AE是∠FAD的角平分线;

(2)成立,如图,延长FEAD于点B,

EDC的中点,

EC=ED,

FCDC,ADDC,

∴∠FCE=EDB=90°,

FCEBDE中,

,

∴△FCE≌△BDE,

EF=EB,

AEFE,

AF=AB,

AE是∠FAD的角平分线;

(3)成立,如图,延长FEAD于点B,

AD=DC,

∴∠FCE=EDB,

FCEBDE中,

,

∴△FCE≌△BDE,

EF=EB,

AEFE,

AF=AB,

AE是∠FAD的角平分线.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网