题目内容

【题目】如图,点E是正方形ABCD的对角线AC上的一个动点(不与AC重合),作EFAC交边BC于点F,连接AFBE交于点G

(1)求证:CAF∽△CBE

(2)若AF平分∠BAC,求证:AC2=2AGAF

【答案】(1)证明见解析;(2)证明见解析.

【解析】

(1)利用AA证明CEF∽△CAB,再列出比例式利用SAS证明CAF∽△CBE

(2)根据题意求出ABF∽△AGB,再转化相关关系即可解答.

(1)证明:∵四边形ABCD是正方形,

∴∠ABC=90°,

EFAC,

∴∠FEC=90°=ABC,

又∵∠FCE=ACB,

∴△CEF∽△CAB,

又∵∠ACF=BCE,

∴△CAF∽△CBE;

(2)∵△CAF∽△CBE,

∴∠CAF=CBE,

AF平分∠BAC,

∴∠BAF=CAF,

∴∠BAF=CBE,

∴∠BAF+AFB=CBE+AFB=90°,

即∠ABF=BGA=90°,

∵∠BAG=BAF,

∴△ABF∽△AGB,

AB2AGAF

∵正方形ABCD中,AC2=2AB2

AC2=2AGAF

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网