题目内容
【题目】如图,已知Rt△ABC,∠ABC=90°,以直角边AB为直径作⊙O,交斜边AC于点D,连接BD.
(1)若AD=3,BD=4,求边BC的长;
(2)取BC的中点E,连接ED,试证明ED与⊙O相切.
【答案】
(1)解:∵AB为直径,
∴∠ADB=90°,即BD⊥AC.
在Rt△ADB中,∵AD=3,BD=4,
∴由勾股定理得AB=5.
∵∠ABC=90°,BD⊥AC,
∴△ABD∽△ACB,
∴ = ,
即 = ,
∴BC=
(2)证明:连接OD,
∵OD=OB,
∴∠ODB=∠OBD;
又∵E是BC的中点,BD⊥AC,
∴DE=BE,
∴∠EDB=∠EBD.
∴∠ODB+∠EDB=∠OBD+∠EBD=90°,
即∠ODE=90°,
∴DE⊥OD.
∴ED与⊙O相切.
【解析】(1)根据勾股定理易求AB的长;根据△ABD∽△ACB得比例线段可求BC的长.(2)连接OD,证明DE⊥OD.
练习册系列答案
相关题目