题目内容
【题目】如图,已知AB为⊙O的直径,点C、D在⊙O上,CD=BD,E、F是线段AC、AB的延长线上的点,并且EF与⊙O相切于点D.
(1)求证:∠A=2∠BDF;
(2)若AC=3,AB=5,求CE的长.
【答案】(1)见解析:(2)CE=1.
【解析】
(1)连接AD,如图,先证明得到∠1=∠2,再根据圆周角定理得到∠ADB=90°,根据切线的性质得到OD⊥EF,然后证明∠1=∠4得到结论;
(2)连接BC交OD于F,如图,根据圆周角定理得到∠ACB=90°,再根据垂径定理,由得到OD⊥BC,则CF=BF,所以OF=AC=,从而得到DF=1,然后证明四边形CEDF为矩形得CE=1.
(1)证明:连接AD,如图,
∵CD=BD,
∴,
∴∠1=∠2,
∵AB为直径,
∴∠ADB=90°,
∴∠1+∠ABD=90°,
∵EF为切线,
∴OD⊥EF,
∴∠3+∠4=90°,
∵OD=OB,
∴∠3=∠OBD,
∴∠1=∠4,
∴∠A=2∠BDF;
(2)解:连接BC交OD于F,如图,
∵AB为直径,
∴∠ACB=90°,
∵,
∴OD⊥BC,
∴CF=BF,
∴OF=AC=,
∴DF=﹣=1,
∵∠ACB=90°,OD⊥BC,OD⊥EF,
∴四边形CEDF为矩形,
∴CE=DF=1.
【题目】某课外学习小组根据学习函数的经验,对函数y=x3﹣3x的图象与性质进行了探究.请补充完整以下探索过程:
(1)列表:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | … | ||||
y | … | ﹣2 | m | 2 | 0 | n | 2 | … |
请直接写出m,n的值;
(2)根据上表中的数据,在平面直角坐标系内补全该函数的图象;
(3)若函数y=x3﹣3x的图象上有三个点A(x1,y1),B(x2,y2),C(x3,y3),且x1<﹣2<x2<2<x3,则y1,y2,y3之间的大小关系为 (用“<”连接);
(4)若方程x3﹣3x=k有三个不同的实数根.请根据函数图象,直接写出k的取值范围.