题目内容

【题目】已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论: ①抛物线过原点;
②4a+b+c=0;
③a﹣b+c<0;
④抛物线的顶点坐标为(2,b);
⑤当x<2时,y随x增大而增大.
其中结论正确的是(

A.①②③
B.③④⑤
C.①②④
D.①④⑤

【答案】C
【解析】解:①∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0), ∴抛物线与x轴的另一交点坐标为(0,0),结论①正确;
②∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,且抛物线过原点,
∴﹣ =2,c=0,
∴b=﹣4a,c=0,
∴4a+b+c=0,结论②正确;
③∵当x=﹣1和x=5时,y值相同,且均为正,
∴a﹣b+c>0,结论③错误;
④当x=2时,y=ax2+bx+c=4a+2b+c=(4a+b+c)+b=b,
∴抛物线的顶点坐标为(2,b),结论④正确;
⑤观察函数图象可知:当x<2时,yy随x增大而减小,结论⑤错误.
综上所述,正确的结论有:①②④.
故选C.
【考点精析】通过灵活运用二次函数图象以及系数a、b、c的关系和抛物线与坐标轴的交点,掌握二次函数y=ax2+bx+c中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上; a<0时,抛物线开口向下b与对称轴有关:对称轴为x=-b/2a;c表示抛物线与y轴的交点坐标:(0,c);一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网