题目内容
【题目】二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如表
x | ﹣1 | 0 | 1 | 3 |
y | ﹣1 | 3 | 5 | 3 |
下列结论:
①ac<0;
②当x>1时,y的值随x值的增大而减小.
③3是方程ax2+(b﹣1)x+c=0的一个根;
④当﹣1<x<3时,ax2+(b﹣1)x+c>0.
其中正确的结论是 .
【答案】①③④
【解析】解:∵x=﹣1时y=﹣1,x=0时,y=3,x=1时,y=5,
∴ ,
解得 ,
∴y=﹣x2+3x+3,
∴ac=﹣1×3=﹣3<0,故①正确;
对称轴为直线x=﹣ = ,
所以,当x> 时,y的值随x值的增大而减小,故②错误;
方程为﹣x2+2x+3=0,
整理得,x2﹣2x﹣3=0,
解得x1=﹣1,x2=3,
所以,3是方程ax2+(b﹣1)x+c=0的一个根,正确,故③正确;
﹣1<x<3时,ax2+(b﹣1)x+c>0正确,故④正确;
综上所述,结论正确的是①③④.
所以答案是:①③④.
【考点精析】利用二次函数的性质对题目进行判断即可得到答案,需要熟知增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.
练习册系列答案
相关题目