题目内容

精英家教网如图,在平面直角坐标系中,顶点为(4,-1)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3).
(1)求此抛物线的解析式
(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有怎样的位置关系,并给出证明;
(3)已知点P是抛物线上的一个动点,且位于A,C两点之间,问:当点P运动到什么位置时,△PAC的面积最大?并求出此时P点的坐标和△PAC的最大面积.
分析:(1)已知抛物线的顶点坐标,可用顶点式设抛物线的解析式,然后将A点坐标代入其中,即可求出此二次函数的解析式;
(2)根据抛物线的解析式,易求得对称轴l的解析式及B、C的坐标,分别求出直线AB、BD、CE的解析式,再求出CE的长,与到抛物线的对称轴的距离相比较即可;
(3)过P作y轴的平行线,交AC于Q;易求得直线AC的解析式,可设出P点的坐标,进而可表示出P、Q的纵坐标,也就得出了PQ的长;然后根据三角形面积的计算方法,可得出关于△PAC的面积与P点横坐标的函数关系式,根据所得函数的性质即可求出△PAC的最大面积及对应的P点坐标.
解答:解:(1)设抛物线为y=a(x-4)2-1,
∵抛物线经过点A(0,3),
∴3=a(0-4)2-1,a=
1
4

∴抛物线为y=
1
4
(x-4)2-1=
1
4
x2-2x+3
;(3分)

(2)相交.
证明:连接CE,则CE⊥BD,精英家教网
1
4
(x-4)2-1=0
时,x1=2,x2=6.
A(0,3),B(2,0),C(6,0),
对称轴x=4,
∴OB=2,AB=
22+32
=
13
,BC=4,
∵AB⊥BD,
∴∠OAB+∠OBA=90°,∠OBA+∠EBC=90°,
∴△AOB∽△BEC,
AB
BC
=
OB
CE
,即
13
4
=
2
CE
,解得CE=
8
13
13

8
13
13
>2,
∴抛物线的对称轴l与⊙C相交.(7分)

(3)如图,过点P作平行于y轴的直线交AC于点Q;精英家教网
可求出AC的解析式为y=-
1
2
x+3
;(8分)
设P点的坐标为(m,
1
4
m2-2m+3
),
则Q点的坐标为(m,-
1
2
m+3
);
∴PQ=-
1
2
m+3-(
1
4
m2-2m+3)=-
1
4
m2+
3
2
m.
∵S△PAC=S△PAQ+S△PCQ=
1
2
×(-
1
4
m2+
3
2
m)×6
=-
3
4
(m-3)2+
27
4

∴当m=3时,△PAC的面积最大为
27
4

此时,P点的坐标为(3,-
3
4
).(10分)
点评:此题考查了二次函数解析式的确定、相似三角形的判定和性质、直线与圆的位置关系、图形面积的求法等知识.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网