题目内容
【题目】如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+3与x轴和y轴的正半轴分别交于A、B两点,且OA=OB,抛物线的顶点为M,联结AB、AM.
(1)求这条抛物线的表达式和点M的坐标;
(2)求sin∠BAM的值;
(3)如果Q是线段OB上一点,满足∠MAQ=45°,求点Q的坐标.
【答案】(1)y=﹣x2+2x+3,顶点M(1,4);(2);(3)Q(0,1).
【解析】
(1)抛物线y=﹣x2+bx+3与y轴交于B点,令x=0得y=3,可得B(0,3),而AO=BO可得A(3,0),然后用待定系数法解答即可;
(2)先说明∠MBA=90°,则即可;
(3)先明∠BAM=∠OAQ,然后运用正弦、正切的定义求解即可.
解:(1)∵抛物线y=﹣x2+bx+3与y轴交于B点,
令x=0得y=3,
∴B(0,3),
∵AO=BO,
∴A(3,0),
把A(3,0)代入y=﹣x2+bx+3,得﹣9+3b+3=0,
解得b=2,
∴这条抛物线的表达式y=﹣x2+2x+3,
顶点M(1,4);
(2)∵A(3,0),B(0,3)M(1,4),
∴BM2=2,AB2=18,AM2=20,
∴∠MBA=90°,
∴;
(3)∵OA=OB,
∴∠OAB=45°
∵∠MAQ=45°,
∴∠BAM=∠OAQ,
由(2)得,
∴,
∴,
∴,
∴OQ=1,
∴Q(0,1).
练习册系列答案
相关题目
【题目】抛物线y=﹣x2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表所示:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | … |
y | … | 0 | 4 | 6 | 6 | 4 | … |
从上表可知,下列说法中,错误的是( )
A. 抛物线于x轴的一个交点坐标为(﹣2,0)
B. 抛物线与y轴的交点坐标为(0,6)
C. 抛物线的对称轴是直线x=0
D. 抛物线在对称轴左侧部分是上升的