题目内容

【题目】在三角形ABC中,BC=14,AC=9,AB=13,它的内切圆分别和BC、AC、AB切于点D、E、F,那么AF、BD、CE的长分别为(  )

A. AF=4,BD=9,CE=5 B. AF=4,BD=5,CE=9

C. AF=5,BD=4,CE=9 D. AF=9,BD=4,CE=5

【答案】A

【解析】

利用切线长定理可以得到AE=AF,BF=BD,CD=CE,因而可以设AF=xcm,BD=ycm,CE=zcm,根据BC=14cm,AC=9cm,AB=13cm即可得到一个关于x,y,z的方程组,即可求解.

AF=xcmBD=ycmCE=zcm.

AFAE是圆的切线,

AE=AF=xcm

同理:BF=BD=ycmCD=CE=zcm.

根据题意得:

解得:

即:AF=4cmBD=9cmCE=5cm.

故选:A.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网