题目内容
【题目】为了庆祝新中国成立70周年,某校组织八年级全体学生参加“恰同学少年,忆峥嵘岁月”新中国成立70周年知识竞赛活动.将随机抽取的部分学生成绩进行整理后分成5组,50~60分()的小组称为“学童”组,60~70分()的小组称为“秀才”组,70~80分()的小组称为“举人”组,80~90分()的小组称为“进士”组,90~100分()的小组称为“翰林”组,并绘制了不完整的频数分布直方图如下,请结合提供的信息解答下列问题:
(1)若“翰林”组成绩的频率是12.5%,请补全频数分布直方图;
(2)在此次比赛中,抽取学生的成绩的中位数在 组;
(3)学校决定对成绩在70~100分()的学生进行奖励,若八年级共有336名学生,请通过计算说明,大约有多少名学生获奖?
【答案】(1)详见解析;(2)70~80或“举人”;(3)231.
【解析】
(1)先根据90~100分的人数及其所占百分比求得总人数,再由各组人数之和等于总人数求得60~70分的人数.从而补全图形;
(2)根据中位数的定义求解可得;
(3)利用样本估计总体的思想求解可得.
解:(1)∵被调查的总人数为6÷12.5%=48(人),
∴60~70分的人数为48-(3+18+9+6)=12(人),
补全频数分布直方图如下:
(2)因为中位数是第24、25个数据的平均数,而第24、25个数据都落在70~80分这一组,
所以在此次比赛中,抽取学生的成绩的中位数在70~80或“举人”组,
故答案为:70~80或“举人”;
(3).
答:大约有231名学生获奖.
故答案为:(1)详见解析;(2)70~80或“举人”;(3)231.
练习册系列答案
相关题目