题目内容
【题目】如图所示,已知∠OEB=130°,∠FOD=25°,OF平分∠EOD,试说明AB∥CD.
【答案】证明:∵OF平分∠EOD, ∴∠FOD= ∠EOD;
∵∠FOD=25°,
∴∠EOD=50°;
又∵∠OEB=130°,
∴∠OEB+∠EOD=180°,
∴AB∥CD(同旁内角互补,两直线平行)
【解析】根据角平分线的定义先求出∠EOD的度数,再利用同旁内角互补,两直线平行可证明AB∥CD.
【考点精析】认真审题,首先需要了解角的平分线(从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线),还要掌握平行线的判定(同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行)的相关知识才是答题的关键.
练习册系列答案
相关题目
【题目】某中学为了筹备校庆活动,准备印制一批校庆纪念册.该纪念册分A、B两种,每册都需要10张8K大小的纸,其中A纪念册有4张彩色页和6张黑白页组成;B纪念册有6张彩色页和4张黑白页组成.印制这批纪念册的总费用由制版费和印制费两部分组成,制版费与印数无关,价格为:彩色页300元∕张,黑白页50元∕张;印制费与总印数的关系见下表.
总印数a(单位:千册) | 1≤a<5 | 5≤a<10 |
彩色(单位:元∕张) | 2.2 | 2.0 |
黑白(单位:元∕张) | 0.7 | 0.5 |
(1)印制这批纪念册的制版费为多少元.
(2)若印制A、B两种纪念册各2千册,则共需多少费用?
(3)如果该校共印制了A、B两种纪念册6千册,一共花费了75500元,则该校印制了A、B两种纪念册各多少册?