题目内容
【题目】如图,圆柱形容器中,高为120cm,底面周长为100cm,在容器内壁离容器底部40cm,的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿40cm与蚊子相对的点A处,
则壁虎捕捉蚊子的最短距离为Cm(容器厚庋忽略不计).
【答案】130
【解析】解:如图,将容器侧面展开,作A关于EC的对称点A′,连接A′B交EC于F,则A′B即为最短距离
∵高为120cm,底面周长为100cm,在容器内壁离容器底部40cm的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿40cm与蚊子相对的点A处,
∴A′D=50cm,BD=120cm,
∴在直角△A′DB中,A′B===130cm .
所以答案是:130 。
【考点精析】利用几何体的展开图和轴对称-最短路线问题对题目进行判断即可得到答案,需要熟知沿多面体的棱将多面体剪开成平面图形,若干个平面图形也可以围成一个多面体;同一个多面体沿不同的棱剪开,得到的平面展开图是不一样的,就是说:同一个立体图形可以有多种不同的展开图;已知起点结点,求最短路径;与确定起点相反,已知终点结点,求最短路径;已知起点和终点,求两结点之间的最短路径;求图中所有最短路径.
练习册系列答案
相关题目