题目内容
【题目】如图,矩形中,为原点,点在轴上,点在轴上,点的坐标为(4,3),抛物线与轴交于点,与直线交于点,与轴交于两点.
(1)求抛物线的表达式;
(2)点从点出发,在线段上以每秒1个单位长度的速度向点运动,与此同时,点从点出发,在线段上以每秒个单位长度的速度向点运动,当其中一点到达终点时,另一点也停止运动.连接,设运动时间为(秒).
①当为何值时,得面积最小?
②是否存在某一时刻,使为直角三角形?若存在,直接写出的值;若不存在,请说明理由.
【答案】(1);(2)① ;②
【解析】
(1)根据点B的坐标可得出点A,C的坐标,代入抛物线解析式即可求出b,c的值,求得抛物线的解析式;
(2)①过点Q、P作QF⊥AB、PG⊥AC,垂足分别为F、G,推出△QFA∽△CBA,△CGP∽△CBA,用含t的式子表示OF,PG,将三角形的面积用含t的式子表示出来,结合二次函数的性质可求出最值;②由于三角形直角的位置不确定,需分情况讨论,根据点的坐标,再结合两点间的距离公式用勾股定理求解即可.
解:(1)由题意知:A(0,3),C(4,0),
∵抛物线经过A、B两点,
∴,解得,,
∴抛物线的表达式为:.
(2)① ∵四边形ABCD是矩形,
∴∠B=90O, ∴AC2=AB2+BC2=5;
由,可得,∴D(2,3).
过点Q、P作QF⊥AB、PG⊥AC,垂足分别为F、G,
∵∠FAQ=∠BAC, ∠QFA=∠CBA,
∴△QFA∽△CBA.
∴,
∴.
同理:△CGP∽△CBA,
∴∴,∴,
当时,△DPQ的面积最小.最小值为.
② 由图像可知点D的坐标为(2,3),AC=5,直线AC的解析式为:.
三角形直角的位置不确定,需分情况讨论:
当时,根据勾股定理可得出:
,
整理,解方程即可得解;
当时,可知点G运动到点B的位置,点P运动到C的位置,所需时间为t=3;
当时,同理用勾股定理得出:
;
整理求解可得t的值.
由此可得出t的值为:,,,,.