题目内容
【题目】在线段AB的同侧作射线AM和BN,若∠MAB与∠NBA的平分线分别交射线BN,AM于点E,F,AE和BF交于点P.如图,点点同学发现当射线AM,BN交于点C;且∠ACB=60°时,有以下两个结论:
①∠APB=120°;②AF+BE=AB.
那么,当AM∥BN时:
(1)点点发现的结论还成立吗?若成立,请给予证明;若不成立,请求出∠APB的度数,写出AF,BE,AB长度之间的等量关系,并给予证明;
(2)设点Q为线段AE上一点,QB=5,若AF+BE=16,四边形ABEF的面积为32,求AQ的长.
【答案】(1)、∠APB=90°,AF+BE=2AB;理由见解析;(2)、AQ=4﹣3或4+3
【解析】
试题分析:(1)、由角平分线和平行线整体求出∠MAB+∠NBA,从而得到∠APB=90°,最后用等边对等角,即可;(2)、先根据条件求出AF,FG,求出∠FAG=60°,最后分两种情况讨论计算.
试题解析:(1)、原命题不成立,新结论为:∠APB=90°,AF+BE=2AB(或AF=BE=AB),
理由:∵AM∥BN, ∴∠MAB+∠NBA=180°, ∵AE,BF分别平分∠MAB,NBA,
∴∠EAB=∠MAB,∠FBA=∠NBA, ∴∠EAB+∠FBA=(∠MAB+∠NBA)=90°, ∴∠APB=90°,
∵AE平分∠MAB, ∴∠MAE=∠BAE, ∵AM∥BN, ∴∠MAE=∠BAE, ∴∠BAE=∠BEA, ∴AB=BE,
同理:AF=AB, ∴AF=+BE=2AB(或AF=BE=AB);
(2)、如图1,
过点F作FG⊥AB于G, ∵AF=BE,AF∥BE, ∴四边形ABEF是平行四边形, ∵AF+BE=16,
∴AB=AF=BE=8, ∵32=8×FG, ∴FG=4, 在Rt△FAG中,AF=8, ∴∠FAG=60°,
当点G在线段AB上时,∠FAB=60°,
当点G在线段BA延长线时,∠FAB=120°,
①如图2,
当∠FAB=60°时,∠PAB=30°, ∴PB=4,PA=4, ∵BQ=5,∠BPA=90°, ∴PQ=3,
∴AQ=4﹣3或AQ=4+3.
②如图3,
当∠FAB=120°时,∠PAB=60°,∠FBG=30°, ∴PB=4, ∵PB=4>5,
∴线段AE上不存在符合条件的点Q,
∴当∠FAB=60°时,AQ=4﹣3或4+3.
【题目】某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如图的统计表和扇形图:
各部门人数及每人所创年利润统计表
部门 | 员工人数 | 每人所创的年利润/万元 |
A | 5 | 20 |
B | b | 18 |
C | c | 15 |
(1)①在扇形图中,a= ,C部门所对应的圆心角的度数为 .
②在统计表中,b= ,c= .
(2)求这个公司平均每人所创年利润.
【题目】(10分)学校组织学生参加综合实践活动,他们参与了某种品牌运动鞋的销售工作,已知该运动鞋每双的进价为120元,为寻求合适的销售价格进行了4天的试销,试销情况如下表所示:
第1天 | 第2天 | 第3天 | 第4天 | |
售价x(元/双) | 150 | 200 | 250 | 300 |
销售量y(双) | 40 | 30 | 24 | 20 |
(1)观察表中数据,x,y满足什么函数关系?请求出这个函数关系式;
(2)若商场计划每天的销售利润为3000元,则其单价定为多少元?
【题目】“勤劳”是中华民族的传统美德,学校要求同学们在家里帮助父母做些力所能及的家务.王刚同学在本学期开学初对部分同学寒假在家做家务的时间进行了抽样调查(时间取整数小时),所得数据统计如下表:
时间分组 | 0.5~20.5 | 20.5~40.5 | 40.5~60.5 | 60.5~80.5 | 80.5~100.5 |
频 数 | 20 | 25 | 30 | 15 | 10 |
(1)抽取样本的容量是 .
(2)根据表中数据补全图中的频数分布直方图
(3)样本的中位数所在时间段的范围是 .
(4)若该学校有学生1260人,那么大约有多少学生在寒假做家务的时间在40.5~100.5小时之间?