题目内容

【题目】如图,正方形ABCD的边长为1,AB边上有一动点P,连接PD,线段PD绕点P顺时针旋转90°后,得到线段PE,且PE交BC于F,连接DF,过点E作EQ⊥AB的延长线于点Q.
(1)求线段PQ的长;
(2)问:点P在何处时,△PFD∽△BFP,并说明理由.

【答案】
(1)解:根据题意得:PD=PE,∠DPE=90°,

∴∠APD+∠QPE=90°,

∵四边形ABCD是正方形,

∴∠A=90°,

∴∠ADP+∠APD=90°,

∴∠ADP=∠QPE,

∵EQ⊥AB,

∴∠A=∠Q=90°,

在△ADP和△QPE中,

∴△ADP≌△QPE(AAS),

∴PQ=AD=1


(2)解:∵△PFD∽△BFP,

∵∠ADP=∠EPB,∠CBP=∠A,

∴△DAP∽△PBF,

=

∴PA=PB,

∴PA= AB=

∴当PA= ,即点P是AB的中点时,△PFD∽△BFP


【解析】(1)由题意得:PD=PE,∠DPE=90°,又由正方形ABCD的边长为1,易证得△ADP≌△QPE,然后由全等三角形的性质,求得线段PQ的长;(2)易证得△DAP∽△PBF,又由△PFD∽△BFP,根据相似三角形的对应边成比例,可得证得PA=PB,则可求得答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网