题目内容
【题目】如图所示,甲、乙两人在玩转盘游戏时,分别把转盘A,B分成3等份和1等份,并在每一份内标上数字.游戏规则:同时转动两个转盘,当转盘停止后,指针所在区域的数字之积为奇数时,甲获胜;当数字之积为偶数时,乙获胜.如果指针恰好在分割线上时,则需重新转动转盘.
(1)利用画树状图或列表的方法,求甲获胜的概率.
(2)这个游戏规则对甲、乙双方公平吗?若公平,请说明理由;若不公平,请你在转盘A上只修改一个数字使游戏公平(不需要说明理由).
【答案】(1)见解析,甲获胜概率为;(2)这个游戏规则对甲、乙双方不公平,将转盘A上的数字2改为1,则游戏公平.
【解析】
(1)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得;
(2)先计算出数字之积为偶数的概率,判断概率是否相等即可得知游戏是否公平.
解:(1)列表如下:
﹣2 | ﹣3 | 2 | 3 | |
1 | ﹣2 | ﹣3 | 2 | 3 |
2 | ﹣4 | ﹣6 | 4 | 6 |
3 | ﹣6 | ﹣9 | 6 | 9 |
由表可知,共有12种等可能结果,其中指针所在区域的数字之积为奇数的有4种结果,
所以甲获胜概率为;
(2)∵指针所在区域的数字之积为偶数的概率为,
∴这个游戏规则对甲、乙双方不公平,
将转盘A上的数字2改为1,则游戏公平.
练习册系列答案
相关题目