题目内容
【题目】已知x=3是方程 的一个根,求k的值和方程其余的根.
【答案】解:把x=3代入 ,得 + =1,解得k=﹣3.
将k=﹣3代入原方程得: ,
方程两边都乘以x(x+2),得10x﹣3(x+2)=x(x+2),
整理得x2﹣5x+6=0,解得x1=2,x2=3.
检验:x=2时,x(x+2)=8≠0
∴x=2是原方程的根.
x=3时,x(x+2)=15≠0
∴x=3是原方程的根.
∴原方程的根为x1=2,x2=3.
故k=3,方程其余的根为x=2
【解析】根据方程根的定义把x=3代入原方程求出K的值,再把K的值反代回原方程求解检验得出结论。
【考点精析】本题主要考查了分式方程的解和去分母法的相关知识点,需要掌握分式方程无解(转化成整式方程来解,产生了增根;转化的整式方程无解);解的正负情况:先化为整式方程,求整式方程的解;先约后乘公分母,整式方程转化出.特殊情况可换元,去掉分母是出路.求得解后要验根,原留增舍别含糊才能正确解答此题.
【题目】某电子厂商设计了一款制造成本为18元新型电子厂品,投放市场进行试销.经过调查,得到每月销售量y(万件)与销售单价x(元)之间的部分数据如下:
销售单价x(元/件) | … | 20 | 25 | 30 | 35 | … |
每月销售量y(万件) | … | 60 | 50 | 40 | 30 | … |
(1)求出每月销售量y(万件)与销售单价x(元)之间的函数关系式.
(2)求出每月的利润z(万元)与销售单x(元)之间的函数关系式.
(3)根据相关部门规定,这种电子产品的销售利润率不能高于50%,而且该电子厂制造出这种产品每月的制造成本不能超过900万元.那么并求出当销售单价定为多少元时,厂商每月能获得最大利润?最大利润是多少?(利润=售价﹣制造成本)
【题目】红星中学计划组织“春季研修活动,活动组织负责人从公交公司了解到如下租车信息:
车型 | ||
载客量(人/辆) | ||
租金(元/辆) |
校方从实际情况出发,决定租用、型客车共辆,而且租车费用不超过元。
(1)请为校方设计可能的租车方案;
(2)在(1)的条件下,校方根据自愿的原则,统计发现有人参加,请问校方应如何租车,且又省钱?