题目内容
【题目】一次函数y=ax+b(a≠0)、二次函数y=ax2+bx和反比例函数y=(k≠0)在同一直角坐标系中的图象如图所示,A点的坐标为(-2,0),则下列结论中,正确的是( )
A.b=2a+k B.a=b+k C.a>b>0 D.a>k>0
【答案】D.
【解析】
试题分析:∵根据图示知,一次函数与二次函数的交点A的坐标为(-2,0),
∴-2a+b=0,
∴b=2a.
∵由图示知,抛物线开口向上,则a>0,
∴b>0.
∵反比例函数图象经过第一、三象限,
∴k>0.
由图示知,双曲线位于第一、三象限,则k>0,
∴2a+k>2a,即b<2a+k.
故本选项错误;
B、∵k>0,b=2a,
∴b+k>b,
即b+k>2a,
∴a=b+k不成立.故本选项错误;
C、∵a>0,b=2a,
∴b>a>0.
故本选项错误;
D、观察二次函数y=ax2+bx和反比例函数(k≠0)图象知,
当x=-=-时,y=-k>- ,即k<a,
∵a>0,k>0,
∴a>k>0.
故本选项正确;
故选D.
考点: 1.二次函数的图象;2.一次函数的图象;3.反比例函数的图象.
练习册系列答案
相关题目