题目内容
【题目】在以下证明中的括号内注明理由:
已知:如图,EF⊥CD于F,GH⊥CD于H.求证:∠1=∠3.
证明:∵EF⊥CD,GH⊥CD(已知),
∴EF∥GH( ).
∴∠1=∠2( ).
∵∠2=∠3( ),
∴∠1=∠3( ).
【答案】证明见解析
【解析】
如果两条直线都与第三条直线垂直,那么这两条直线平行,∠1与∠2是两平行线EF与GH被AB所截成的同位角,所以根据两直线平行,同位角相等可得∠1=∠2.再由图中可知,∠2与∠3是对顶角,根据对顶角相等得∠2=∠3,等量代换得∠1=∠3.
证明:∵EF⊥CD,GH⊥CD(已知),
∴EF∥GH(垂直于同一条直线的两直线平行).
∴∠1=∠2(两直线平行,同位角相等).
∵∠2=∠3(对顶角相等),
∴∠1=∠3(等量代换).
练习册系列答案
相关题目
【题目】某工厂为了对新研发的一种产品进行合理定价,将该产品按拟定的价格进行试销,通过对5天的试销情况进行统计,得到如下数据:
单价(元/件) | 25 | 28 | 35 | 40 | 42 |
销量(件) | 50 | 44 | 30 | 20 | 16 |
(1)通过对上面表格中的数据进行分析,发现销量y(件)与单价x(元/件)之间存在一次函数关系,求y关于x的函数关系式(不需要写出函数自变量的取值范围);
(2)预计在今后的销售中,销量与单价仍然存在(1)中的关系,且该产品的成本是20元/件.为使工厂获得最大利润,该产品的单价应定为多少?