题目内容
【题目】如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B,交x轴正半轴于点C.
(1)求该抛物线的函数表达式;
(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值及此时动点M的坐标;
(3)将点A绕原点旋转得点A′,连接CA′、BA′,在旋转过程中,一动点M从点B出发,沿线段BA′以每秒3个单位的速度运动到A′,再沿线段A′C以每秒1个单位长度的速度运动到C后停止,求点M在整个运动过程中用时最少是多少?
【答案】(1)y=﹣x2+2x+3;(2)S与m的函数表达式是S=,S的最大值是,此时动点M的坐标是(,);(3)点M在整个运动过程中用时最少是秒.
【解析】
(1)首先求出B点的坐标,根据B点的坐标即可计算出二次函数的a值,进而即可计算出二次函数的解析式;
(2)计算出C点的坐标,设出M点的坐标,再根据△ABM的面积为S=S四边形OAMB﹣S△AOB=S△BOM+S△OAM﹣S△AOB,化简成二次函数,再根据二次函数求解最大值即可.
(3)首先证明△OHA′∽△OA′B,再结合A′H+A′C≥HC即可计算出t的最小值.
(1)将x=0代入y=﹣3x+3,得y=3,
∴点B的坐标为(0,3),
∵抛物线y=ax2﹣2ax+a+4(a<0)经过点B,
∴3=a+4,得a=﹣1,
∴抛物线的解析式为:y=﹣x2+2x+3;
(2)将y=0代入y=﹣x2+2x+3,得x1=﹣1,x2=3,
∴点C的坐标为(3,0),
∵点M是抛物线上的一个动点,并且点M在第一象限内,点M的横坐标为m,
∴0<m<3,点M的坐标为(m,﹣m2+2m+3),
将y=0代入y=﹣3x+3,得x=1,
∴点A的坐标(1,0),
∵△ABM的面积为S,
∴S=S四边形OAMB﹣S△AOB=S△BOM+S△OAM﹣S△AOB=,
化简,得
S==,
∴当m=时,S取得最大值,此时S=,此时点M的坐标为(,),
即S与m的函数表达式是S=,S的最大值是,此时动点M的坐标是(,);
(3)如右图所示,取点H的坐标为(0,),连接HA′、OA′,
∵∠HOA′=∠A′OB,,,
∴△OHA′∽△OA′B,
∴,
即,
∵A′H+A′C≥HC=,
∴t≥,
即点M在整个运动过程中用时最少是秒.