题目内容
【题目】我们定义一种新函数:形如(,且)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x2-2x-3|的图象(如图所示),并写出下列五个结论:①图象与坐标轴的交点为,和;②图象具有对称性,对称轴是直线;③当或时,函数值随值的增大而增大;④当或时,函数的最小值是0;⑤当时,函数的最大值是4.其中正确结论的个数是______.
【答案】4
【解析】
由,和坐标都满足函数,∴①是正确的;从图象可以看出图象具有对称性,对称轴可用对称轴公式求得是直线,②也是正确的;
根据函数的图象和性质,发现当或时,函数值随值的增大而增大,因此③也是正确的;函数图象的最低点就是与轴的两个交点,根据,求出相应的的值为或,因此④也是正确的;从图象上看,当或,函数值要大于当时的,因此⑤时不正确的;逐个判断之后,可得出答案.
解:①∵,和坐标都满足函数,∴①是正确的;
②从图象可知图象具有对称性,对称轴可用对称轴公式求得是直线,因此②也是正确的;
③根据函数的图象和性质,发现当或时,函数值随值的增大而增大,因此③也是正确的;
④函数图象的最低点就是与轴的两个交点,根据,求出相应的的值为或,因此④也是正确的;
⑤从图象上看,当或,函数值要大于当时的,因此⑤时不正确的;
故答案是:4
练习册系列答案
相关题目