题目内容

【题目】一次函数y=ax+b(a≠0)的图象与反比例函数y= (k≠0)的图象相交于A,B两点,与y轴交于点C,与x轴交于点D,点D的坐标为(﹣1,0),点A的横坐标是1,tan∠CDO=2.过点B作BH⊥y轴交y轴于H,连接AH.

(1)求一次函数和反比例函数的解析式;
(2)求△ABH面积.

【答案】
(1)解:∵点D的坐标为(﹣1,0),tan∠CDO=2,

∴CO=2,即C(0,2),

把C(0,2),D(﹣1,0)代入y=ax+b可得,

,解得

∴一次函数解析式为y=2x+2,

∵点A的横坐标是1,

∴当x=1时,y=4,即A(1,4),

把A(1,4)代入反比例函数y= ,可得k=4,

∴反比例函数解析式为y=


(2)解:解方程组 ,可得

∴B(﹣2,﹣2),

又∵A(1,4),BH⊥y轴,

∴△ABH面积= ×2×(4+2)=6.


【解析】(1)可由三角函数求出C坐标,再求出直线AC解析式,求出A坐标,利用待定系数法进而求出两解析式;(2)以水平边BH为底求出△ABH面积即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网