题目内容
【题目】如图,在△ABC中,∠ACB=90°,AC=1,将△ABC绕点C顺时针旋转60°至△A′B′C,点A的对应点A′恰好落在AB上,求BB′的长.
【答案】BB′= .
【解析】先利用旋转的旋转得CA=CA′,CB=CB′,∠ACA′=∠BCB′=60°,则可判断△ACA′和△BCB′均为等边三角形,所以BB′=BC,∠A=60°,∠CBB′=60°,再利用∠A=60°得∠ABC=30°,所以BC=CA=,从而得到BB′的长.
解:∵将△ABC绕点C顺时针旋转60°至△A′B′C,
∴CA=CA′,CB=CB′,∠ACA′=∠BCB′=60°,
∴△ACA′和△BCB′均为等边三角形,
∴BB′=BC,∠A=60°,∠CBB′=60°,
∵点A′在AB上,∠ACB=90°,
∴∠A=60°,∠ABC=90°﹣∠A=30°,
在Rt△ABC中,BC=CA=,
∴BB′=.
练习册系列答案
相关题目