题目内容

已知四边形ABCD是边长为2的菱形,∠BAD=60°,对角线AC与BD交于点O,过点O的直线EF交AD于点E,交BC于点F.

(1)求证:△AOE≌△COF;
(2)若∠EOD=30°,求CE的长.
解:(1)证明:∵四边形ABCD是菱形,∴AO=CO,AD∥BC。∴∠OAE=∠OCF。
在△AOE和△COF中,∵
∴△AOE≌△COF(ASA)。
(2)∵∠BAD=60°,∴∠DAO=∠BAD=×60°=30°。
∵∠EOD=30°,∴∠AOE=90°﹣30°=60°。
∴∠AEF=180°﹣∠BOD﹣∠AOE=180°﹣30°﹣60°=90°。
∵菱形的边长为2,∠DAO=30°,∴OD=AD=×2=1。


∵菱形的边长为2,∠BAD=60°,∴高
在Rt△CEF中,

试题分析:(1)根据菱形的对角线互相平分可得AO=CO,对边平行可得AD∥BC,再利用两直线平行,内错角相等可得∠OAE=∠OCF,然后利用“角边角”证明△AOE和△COF全等。
(2)根据菱形的对角线平分一组对角求出∠DAO=30°,然后求出∠AEF=90°,然后求出AO的长,再求出EF的长,然后在Rt△CEF中,利用勾股定理列式计算即可得解。
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网