题目内容

【题目】在平面直角坐标系中,正方形OABC的两边OA、OC分别落在x轴、y轴的正半轴上,等腰Rt△ADE的两个顶点D、E和正方形顶点B三点在一条直线上.

(1)如图1,连接OD,求证:△OAD≌△BAE;

(2)如图2,连接CD,求证:BE﹣DE=CD;

(3)如图3,当图1中的Rt△ADE的顶点D与点B重合时,点E正好落在x轴上,F为线段OC上一动点(不与O、C重合),G为线段AF的中点,若CG⊥GK交BE于点K时,请问∠KCG的大小是否变化?若不变,请求其值;若改变,求出变化的范围.

【答案】(1)证明见解析(2)见解析(3)∠KCG的大小不变,

【解析】

(1)利用同角的余角相等可得∠BAD=EAF,由此得∠OAD=BAE,根据SAS证明OAD≌△BAE;(2)作辅助线构建正方形ANDM和等腰直角三角形CFD,把所求CD转化为CF,证CF=OM,由(1)中的全等可知∠ODA=BEA=45°,证明∠ODC=45°,推出CFCD的关系,利用直角三角形斜边中线和正方形的性质求出BE﹣DE的值为OM,得出结论;(3)作辅助线构建正方形BMKN和全等三角形,首先利用全等证明CG=QG,由线段垂直平分线性质得KC=KQ,证明RtCNKRtQMK,得∠CKN=QKM,可知∠CKQ=90°,得KCQ是等腰直角三角形,因此得出结论:∠KCG的大小不变,等于45°.

(1)如图1,在正方形ABCO中,

∵∠BAF=∠DAE=90°,

∴∠BAD=∠EAF,

∴∠BAD+∠OAB=∠EAF+∠BAF,

即∠OAD=∠BAE,

∵AB=AO,AD=AE,

∴△OAD≌△BAE;

(2)如图2,设CD与AB的交点为P,

过C作CF⊥OD于F,过A作AN⊥DE于N,AM⊥OD于M,

∵等腰Rt△ADE,AD=AE,

∴AN=DN=DE,

∴四边形ANDM是正方形,

∴DN=DM,

∴BE﹣DE=OD﹣DM=OM,

由①△OAD≌△BAE得,∠ODA=∠BEA=45°,

∴∠ODE=90°,

∵∠OAB=∠ODB=90°,∠OPA=∠BPD,

∴△OAP∽△BDP,

∵∠CBD=90°+∠ABE,∠APD=90°+∠AOD,

∠ABE=∠AOD,

∴∠CBD=∠APD,

∴△CBD∽△APD,

∴∠CDB=∠ADO=45°,

∴∠ODC=90°﹣45°=45°,

∵sin45°=

∴CF=

∵△COF≌△OAM,

∴CF=OM,

∴BE﹣DE=CD;

(3)如图3,∠KCG的大小不变,理由是:

过K作KM⊥AB于M,KN⊥BC,交CB的延长线于N,延长CG、BA交于Q,连接KQ,

∵∠N=∠MBN=∠BMK=90°,

∴四边形BMKN是矩形,

∵AB=AE,∠BAE=90°,

∴∠ABE=45°,

∴BM=KM,

∴矩形BMKN是正方形,

∵OC∥AB,

∴∠OCG=∠GQA,

∵FG=AG,∠CGF=∠AGQ,

∴△FCG≌△AQG,

∴CG=QG,

∵CG⊥GK,

∴KC=KQ,

∵KN=KM,

∴Rt△CNK≌Rt△QMK,

∴∠CKN=∠QKM,

∴∠CKQ=∠CKM+∠MKQ=∠CKM+∠CKN=90°,

∴△KCQ是等腰直角三角形,

∴∠KCG=∠KQC=45°.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网