题目内容

【题目】古希腊数学家把数1,3,6,10,15,21,……叫做三角形数,它有一定的规律性,若把第一个三角形数记为a1 ,第二个三角数形记为a 2 ,……,第n个三角形数记为an,计算a2-a1,a 3-a2……由此推算a 100-a 99 =________;a100=________.

【答案】100; 5050

【解析】

两数相减等于前面数的下标,如:an-an-1=n
利用(a2-a1+a3-a2+a4-a3++an-an-1=an-a1,求a100

a2-a1=3-1=2
a3-a2=6-3=3
a4-a3=10-6=4
…;
an-an-1=n
所以a100-a99=100
∵(a2-a1+a3-a2+a4-a3++an-an-1
=2+3+4++n
=-1=
a100==5050
故答案为:100,5050

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网