题目内容

【题目】如图,在△ABC中,∠ABC90°DBC的中点,点EAB上,ADCE交于点FAEEF4FC9,则cosACB的值为(  )

A.B.C.D.

【答案】D

【解析】

如图,延长ADM,使得DM=DF,连接BM.利用全等三角形的性质证明BM=CF=9AB=BM,利用勾股定理求出BCAC即可解决问题.

解:如图,延长ADM,使得DM=DF,连接BM

BD=DC,∠BDM=CDFDM=DF
∴△BDM≌△CDFSAS),
CF=BM=9,∠M=CFD
CEBM
∴∠AFE=M
EA=EF
∴∠EAF=EFA
∴∠BAM=M
AB=BM=9
AE=4
BE=5
∵∠EBC=90°
BC==12
AC==15
cosACB=
故选:D

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网