题目内容
【题目】如图,一艘游轮在A处测得北偏东45°的方向上有一灯塔B.游轮以20海里/时的速度向正东方向航行2小时到达C处,此时测得灯塔B在C处北偏东15°的方向上,求A处与灯塔B相距多少海里?(结果精确到1海里,参考数据:≈1.41,≈1.73)
【答案】A处与灯塔B相距109海里.
【解析】直接过点C作CM⊥AB求出AM,CM的长,再利用锐角三角函数关系得出BM的长即可得出答案.
过点C作CM⊥AB,垂足为M,
在Rt△ACM中,∠MAC=90°﹣45°=45°,则∠MCA=45°,
∴AM=MC,
由勾股定理得:AM2+MC2=AC2=(20×2)2,
解得:AM=CM=40,
∵∠ECB=15°,
∴∠BCF=90°﹣15°=75°,
∴∠B=∠BCF﹣∠MAC=75°﹣45°=30°,
在Rt△BCM中,tanB=tan30°=,即,
∴BM=40,
∴AB=AM+BM=40+40≈40+40×1.73≈109(海里),
答:A处与灯塔B相距109海里.
【题目】先锋中学数学课题组为了了解初中学生阅读数学教科书的现状,随机抽取某校部分初中学生进行调查,调查结果分为“重视”、“一般”、“不重视”、“说不清楚”四种情况(依次用A、B、C、D表示),依据相关数据绘制成以下不完整的统计表和统计图,请根据图表中的信息解答下列问题:
类别 | 频数 | 频率 |
重视 | a | 0.25 |
一般 | 60 | 0.3 |
不重视 | b | c |
说不清楚 | 10 | 0.05 |
(1)求样本容量及表格中a,b,c的值,并补全统计图;
(2)若该校共有2000名学生,请估计该校“不重视阅读数学教科书”的学生人数.
【题目】某商店销售一种商品,每件成本8元,规定每件商品售价不低于成本,且不高于20元,经市场调查每天的销售量y(件)与每件售价x(元)满足一次函数关系,部分数据如下表:
售价x(元件) | 10 | 11 | 12 | 13 | 14 | x |
销售量y(件) | 100 | 90 | 80 | 70 |
|
|
(1)将上面的表格填充完整;
(2)设该商品每天的总利润为w元,求w与x之间的函数表达式;
(3)计算(2)中售价为多少元时,获得最大利润,最大利润是多少?