题目内容
【题目】我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应展开式中的系数;第四行的四个数1,3,3,1,恰好对应着展开式中的系数等等.
(1)根据上面的规律,写出的展开式.
(2)利用上面的规律计算:
【答案】(1);(2)1
【解析】
(1)根据材料(a+b)2=a2+2ab+b2和(a+b)3=a3+3a2b+3ab2+b3展开式,可直接得出的展开式;
(2)根据材料的逆运算可得出答案.
(1)如图,
则(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5;
(2)25﹣5×24+10×23﹣10×22+5×2﹣1.
=25+5×24×(﹣1)+10×23×(﹣1)2+10×22×(﹣1)3+5×2×(﹣1)4+(﹣1)5.
=,
=1.
【题目】小楠是一个乐学习,善思考,爱探究的同学,她对函数的图象和性质进行了探究,请你将下列探究过程补充完整:
(Ⅰ)函数的自变量x的取值范围是 .
(Ⅱ)用描点法画函数图象:
(i)列表:
x | … | ﹣5 | ﹣2 | ﹣1 | 0 | … | 2 | 3 | 4 | 7 | … |
y | … | a | 2 | 3 | b | … | 6 | 3 | 2 | 1 | … |
表中a的值为 ,b的值为 .
(ii)描点连线:请在下图画出该图象的另一部分.
(Ⅲ)观察函数图象,得到函数的性质:
当x 时,函数值y随x的增大而 ;
当x 时,函数值y随x的增大而减少.
(IV)应用:若≥6,则x的取值范围是 .
【题目】某商店需要购进甲、乙两种商品共1000件,其进价和售价如下表所示:
甲 | 乙 | |
进价(元/件) | 15 | 35 |
售价(元/件) | 18 | 44 |
(1)若商店计划销售完这批商品后能获利4200元,则甲、乙两种商品应分别购进多少件;
(2)若该商店销售完这批商品后获利要多于5000元,则至少应购进乙种商品多少件?