题目内容
【题目】已知中,,交于,且,,,,则的长度为________.
【答案】
【解析】
过B作BF⊥CD于F,BG⊥BF交AD的延长线于G,则四边形DGBF是矩形,由矩形的性质得到BG=DF,DG=FB.由△BFC是等腰直角三角形,得到FC=BF=2.
设DE=9x,则CE=7x,EF=CE-FC=7x-2,BG=DF=16x-2,DG=FB=2.
在Rt△ADC和Rt△AGB中,由AC=AB,利用勾股定理得到AD=16x-2.
证明△FEB∽△DEA,根据相似三角形的对应边成比例可求出x的值,进而得到AD,DE的长.在Rt△ADE中,由勾股定理即可得出结论.
如图,过B作BF⊥CD于F,BG⊥BF交AD的延长线于G,
∴四边形DGBF是矩形,
∴BG=DF,DG=FB.
∵∠BCD=45°,
∴△BFC是等腰直角三角形.
∵BC=,
∴FC=BF=2.
设DE=9x,则CE=7x,EF=CE-FC=7x-2,BG=DF=16x-2,DG=FB=2.
在Rt△ADC和Rt△AGB中,∵AC=AB,
∴,
∴,
解得:AD=16x-2.
∵FB∥AD,
∴△FEB∽△DEA,
∴,
∴,
∴28x2-16x+1=0,
解得:x=或x=.
当x=时,7x-2<0,不合题意,舍去,
∴x=,
∴AD=16x-2=6,DE=9x=,
∴AE=.
故答案为:.
【题目】祥云桥位于省城太原南部,该桥塔主体由三根曲线塔柱组合而成,全桥共设13对直线型斜拉索,造型新颖,是“三晋大地”的一种象征.某数学“综合与实践”小组的同学把“测量斜拉索顶端到桥面的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间借助该桥斜拉索完成了实地测量.测量结果如下表.
项目 | 内容 | ||
课题 | 测量斜拉索顶端到桥面的距离 | ||
测量示意图 | 说明:两侧最长斜拉索AC,BC相交于点C,分别与桥面交于A,B两点,且点A,B,C在同一竖直平面内. | ||
测量数据 | ∠A的度数 | ∠B的度数 | AB的长度 |
38° | 28° | 234米 | |
… | … |
(1)请帮助该小组根据上表中的测量数据,求斜拉索顶端点C到AB的距离(参考数据:sin38°≈0.6,cos38°≈0.8,tan38°≈0.8,sin28°≈0.5,cos28°≈0.9,tan28°≈0.5)
(2)该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).