题目内容
【题目】某公司为了扩大经营,决定购进6台机器用于生产某活塞.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示.经过预算,本次购买机器所耗资金不能超过34万元.
甲 | 乙 | |
价格(万元/台) | 7 | 5 |
每台日产量(个) | 100 | 60 |
(1)按该公司要求可以有几种购买方案?
(2)如果该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择什么样的购买方案?
【答案】(1)有3种购买方案①购乙6台,②购甲1台,购乙5台,③购甲2台,购乙4台(2)购买甲种机器1台,购买乙种机器5台,
【解析】
(1)设购买甲种机器x台(x≥0),则购买乙种机器(6-x)台,根据买机器所耗资金不能超过34万元,即购买甲种机器的钱数+购买乙种机器的钱数≤34万元.就可以得到关于x的不等式,就可以求出x的范围.
(2)该公司购进的6台机器的日生产能力不能低于380个,就是已知不等关系:甲种机器生产的零件数+乙种机器生产的零件数≤380件.根据(1)中的三种方案,可以计算出每种方案的需要资金,从而选择出合适的方案.
解:(1)设购买甲种机器x台(x≥0),则购买乙种机器(6-x)台
依题意,得7x+5(6-x)≤34
解这个不等式,得x≤2,即x可取0,1,2三个值.
∴该公司按要求可以有以下三种购买方案:
方案一:不购买甲种机器,购买乙种机器6台.
方案二:购买甲种机器l1台,购买乙种机器5台.
方案三:购买甲种机器2台,购买乙种机器4台
(2)根据题意,100x+60(6-x)≥380
解之得x>
由(1)得x≤2,即≤x≤2.
∴x可取1,2俩值.
即有以下两种购买方案:
购买甲种机器1台,购买乙种机器5台,所耗资金为1×7+5×5=32万元;
购买甲种机器2台,购买乙种机器4台,所耗资金为2×7+4×5=34万元.
∴为了节约资金应选择购买甲种机器1台,购买乙种机器5台,.