题目内容

如图,△ABC是正三角形,曲线CDEFG…叫做“正三角形的渐开线”,曲线的各部分为圆弧.
(1)图中已经有4段圆弧,请接着画出第5段圆弧GH;
(2)设△ABC的边长为a,则第1段弧的长是
 
,第5段弧的长是
 
.前5段弧长的和(即曲线CDEFGH的长)是
 

(3)类似地有“正方形的渐开线”,“正五边形的渐开线”,…,边长为a的正方形的渐开线的前5段弧长的和是
 

(4)猜想,①边长为a的正n边形的前5段弧长的和是
 

②边长为a的正n边形的前m段弧长的和是
 

精英家教网
分析:(1)以点B为圆心,BG长为半径画弧即可;
(2)利用弧长公式计算.但要先确定弧所对的圆心角都是120度,半径却在不断的增大,第一次是1,第二次是2,第三次是3,依此下去第五次是5,总和就是把五段弧加起来.
(3)先利用五边形的性质求出五边形的外角度数,再利用弧长公式计算;
(4)五段弧相加,利用多边形的外角公式和弧长公式进行计算.
解答:解:(1)如右图(1分)
精英家教网

(2)
2
3
πa
10
3
πa
,10πa;(3分)

(3)
15πα
2
;(2分)

(4)
30
n
πa
m(m+1)
n
πa
.((2分)+2分))
点评:本题主要考查了弧长公式及多边形的内角和及外角的计算方法,学生注意在做题时要把所学的各块的知识给系统起来.
练习册系列答案
相关题目
(2012•青岛模拟)同学们已经认识了很多正多边形,现以正六边形为例再介绍与正多边形相关的几个概念.如正六边形ABCDEF各边对称轴的交点O,又称正六边形的中心,其中OA称正六边形的半径,通常用R表示,∠AOB称为中心角,显然.提出问题:正多边形内任意一点到各边距离之和与这个正多边形的半径R和中心角有什么关系?
探索发现:
(1)为了解决这个问题,我们不妨从最简单的正多边形--正三角形入手.
如图①,△ABC是正三角形,半径OA=R,∠AOB是中心角,P是△ABC内任意一点,P到△ABC各边距离分别为h1、h2、h3 ,确定h1+h2+h3的值与△ABC的半径R及中心角的关系.
解:设△ABC的边长是a,面积为S,显然S=
1
2
a(h1+h2+h3
O为△ABC的中心,连接OA、OB、OC,它们将△ABC分成三个全等的等腰三角形,过点O作OM⊥AB,垂足为M,Rt△AOM中,易知
OM=OAcos∠AOM=Rcos
1
2
∠AOB=Rcos
1
2
×120°=Rcos60°,
AM=OAsin∠AOM=Rsin
1
2
∠AOB=Rsin
1
2
×120°=Rcos60°
∴AB=a=2AM=2Rsin60°
∴S△AOB=
1
2
AB×OM=
1
2
×2Rsin60°•Rcos60°=R2sin60°cos60°
∴S△ABC=3S△AOB=3R2sin60°cos60°
1
2
a(h1+h2+h3)=3R2sin60°cos60°
即:
1
2
×2Rsin60°(h1+h2+h3)=3R2sin60°cos60°
∴h1+h2+h3=3Rcos60°
(2)如图②,五边形ABCDE是正五边形,半径是R,P是正五边形ABCDE内任意一点,P到五边形ABCDE各边距离分别为h1、h2、h3、h4、h5,参照(1)的探索过程,确定h1+h2+h3+h4+h5的值与正五边形ABCDE的半径R及中心角的关系.
(3)类比上述探索过程,直接填写结论
正六边形(半径是R)内任意一点P到各边距离之和 h1+h2+h3+h4+h5+h6=
6Rcos30°
6Rcos30°

正八边形(半径是R)内任意一点P到各边距离之和 h1+h2+h3+h4+h5+h6+h7+h8=
8Rcos22.5°
8Rcos22.5°

正n边形(半径是R)内任意一点P到各边距离之和  h1+h2+…+hn=
nRcos
180°
n
nRcos
180°
n

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网