题目内容

【题目】如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标为(8,8),将正方形ABCO绕点C逆时针旋转角度α(0°<α<90°),得到正方形CDEF,ED交线段AB于点G,ED的延长线交线段OA于点H,连CH、CG.

(1)求证:△CBG≌△CDG;
(2)求∠HCG的度数;判断线段HG、OH、BG的数量关系,并说明理由;
(3)连结BD、DA、AE、EB得到四边形AEBD,在旋转过程中,四边形AEBD能否为矩形?如果能,请求出点H的坐标;如果不能,请说明理由.

【答案】
(1)∵正方形ABCO绕点C旋转得到正方形CDEF,

∴CD=CB,∠CDG=∠CBG=90°.

在Rt△CDG和Rt△CBG中,

∴△CDG≌△CBG(HL)


(2)解:∵△CDG≌△CBG,

∴∠DCG=∠BCG,DG=BG.

在Rt△CHO和Rt△CHD中,

∴△CHO≌△CHD(HL),

∴∠OCH=∠DCH,OH=DH,

∴∠HCG=∠HCD+∠GCD= ∠OCD+ ∠DCB= ∠OCB=45°,

∴HG=HD+DG=HO+BG


(3)解:四边形AEBD可为矩形.

如图,连接BD、DA、AE、EB,

四边形AEBD若为矩形,则需先为平行四边形,即要对角线互相平分,合适的点只有G为AB中点的时候.

∵DG=BG,

∴DG=AG=EG=BG,即平行四边形AEBD对角线相等,则其为矩形,

∴当G点为AB中点时,四边形AEBD为矩形.

∵四边形DAEB为矩形,

∴AG=EG=BG=DG.

∵AB=6,

∴AG=BG=3.

设H点的坐标为(x,0),则HO=x

∵OH=DH,BG=DG,

∴HD=x,DG=3.

在Rt△HGA中,

∵HG=x+3,GA=3,HA=6﹣x,

∴(x+3)2=32+(6﹣x)2,解得x=2.

∴H点的坐标为(2,0).


【解析】(1)根据旋转的性质正方形ABCO绕点C旋转得到正方形CDEF,,得到对应边、对应角相等,得到△CDG≌△CBG;(2)由(1)知△CDG≌△CBG,得到对应边、对应角相等,得到△CHO≌△CHD,根据全等三角形的对应边、对应角相等,得到∠OCH=∠DCH,OH=DH,由正方形的性质,得到HG=HD+DG=HO+BG;(3)根据四边形AEBD若为矩形,则需先为平行四边形,即要对角线互相平分,合适的点只有G为AB中点的时候,由DG=BG,得到DG=AG=EG=BG,即平行四边形AEBD对角线相等,则其为矩形,当G点为AB中点时,四边形AEBD为矩形;再根据勾股定理求出H点的坐标.
【考点精析】根据题目的已知条件,利用正方形的性质的相关知识可以得到问题的答案,需要掌握正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网