题目内容
【题目】荆州素有“鱼米之乡”的美称,某渔业公司组织20辆汽车装运鲢鱼、草鱼、青鱼共120吨去外地销售,按计划20辆汽车都要装运,每辆汽车只能装运同一种鱼,且必须装满,根据下表提供的信息,解答以下问题:
(1)设装运鲢鱼的车辆为x辆,装运草鱼的车辆为y辆,求y与x之间的函数关系式;
(2)如果装运每种鱼的车辆都不少于2辆,那么怎样安排车辆能使此次销售获利最大?并求出最大利润.
【答案】(1)y=﹣3x+20;(2)装运鲢鱼的车辆为2辆,装运草鱼的车辆为14辆,装运青鱼的车辆为4辆时获利最大,最大利润为33.2万元.
【解析】
试题分析:(1)设装运鲢鱼的车辆为x辆,装运草鱼的车辆为y辆,则由(20﹣x﹣y)辆汽车装运青鱼,根据题意建立等式就可以求出结论;
(2)根据建立不等装运每种鱼的车辆都不少于2辆,列出不等式组求出x的范围,设此次销售所获利润为w元,w=﹣1.4x+36,再利用一次函数的性质即可解答.
试题解析:(1)设装运鲢鱼的车辆为x辆,装运草鱼的车辆为y辆,则由(20﹣x﹣y)辆汽车装运青鱼,由题意,得:8x+6y+5(20﹣x﹣y)=120,∴y=﹣3x+20.
答:y与x的函数关系式为y=﹣3x+20;
(2),根据题意,得:,∴,解得:2≤x≤6,
设此次销售所获利润为w元,w=0.25x×8+0.3(﹣3x+20)×6+0.2(20﹣x+3x﹣20)×5=﹣1.4x+36,∵k=﹣1.4<0,∴w随x的增大而减小.∴当x=2时,w取最大值,最大值为:﹣1.4×2+36=33.2(万元).
答:装运鲢鱼的车辆为2辆,装运草鱼的车辆为14辆,装运青鱼的车辆为4辆时获利最大,最大利润为33.2万元.
练习册系列答案
相关题目