题目内容

【题目】阅读下面材料:
点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为∣AB∣。当A、B两点中有一点在原点时,不妨设点A在原点,如图1,∣AB∣=∣OB∣=∣b∣=∣a-b∣;当A、B两点都不在原点时,如图2,点A、B都在原点的右边∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣=b-a=∣a-b∣;
如图3,点A、B都在原点的左边,∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣=-b-(-a)=∣a-b∣;
如图4,点A、B在原点的两边,∣AB∣=∣OB∣+∣OA∣=∣a∣+∣b∣= a +(-b)=∣a-b∣;

回答下列问题:
(1)数轴上表示2和5的两点之间的距离是,数轴上表示-2和-5的两点之间的距离是,数轴上表示1和-3的两点之间的距离是
(2)数轴上表示x和-1的两点A和B之间的距离是,如果∣AB∣=2,那么x为
(3)当代数式∣x+1∣+∣x-2∣+∣x+3∣取最小值时,相应的x的值是;此时代数式∣x+1∣+∣x-2∣+∣x+3∣的值是.

【答案】
(1)3;3;4
(2);1或-3
(3)-1;5
【解析】解:(1)数轴上表示2和5的两点之间的距离是|2-5|=3,数轴上表示-2和-5的两点之间的距离是|-2-(-5)|=3.数轴上表示1和-3的两点之间的距离是|1-(-3)|=4.(2)数轴上表示x和-1的两点A和B之间的距离是|x-(-1)|=|x+1|,如果|AB|=2,那么x为1或-3.(3)当代数式∣x+1∣+∣x-2∣+∣x+3∣取最小值时,,∴x+1≥0,x-2≤0,x+3≥0,∴-1≤x≤2.即当x取=-1时为最小值,此时代数式值为5(1)数轴上表示2和5的两点之间的距离是|2-5|,数轴上表示-2和-5的两点之间的距离是|-2-(-5)|;数轴上表示1和-3的两点之间的距离是|1-(-3)|;(2)数轴上表示x和-1的两点A和B之间的距离是|x-(-1)|=|x+1|,求出x的值;(3)当代数式∣x+1∣+∣x-2∣+∣x+3∣取最小值时,得到-1≤x≤2;求出代数式的值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网